
A Requirements-Based Programming Approach to Developing

a NASA Autonomous Ground Control System

James L. Rash (james.l.rash@nasa.gov)
NASA Goddard Space Flight Center

Michael G. Hinchey (michael.g.hinchey@nasa.gov)
NASA Goddard Space Flight Center

Christopher A. Rouff (rouffc@saic.com)
SAIC

Denis Gračanin (gracanin@vt.edu)
Virginia Tech

John Erickson (jderick@cs.utexas.edu)
University of Texas at Austin

Abstract. A new requirements-based programming approach to the engineering
of computer-based systems offers not only an underlying formalism, but also full
formal development from requirements capture through to the automatic generation
of provably-correct code. The method, Requirements-to-Design-to-Code (R2D2C),
is directly applicable to the development of autonomous systems and systems having
autonomic properties. We describe both the R2D2C method and a prototype tool
that embodies the method, and illustrate the applicability of the method by describ-
ing how the prototype tool could be used in the development of LOGOS, a NASA
autonomous ground control system that exhibits autonomic behavior. Finally, we
briefly discuss other possible areas of application of the approach.

Keywords: Validation, verification, formal methods, automatic code generation,
NASA, autonomous systems, autonomic systems

1. Introduction

It has been argued that computer-based systems should be autonomic
(Sterritt and Hinchey, 2005), and, more specifically, that autonomous
systems are necessarily autonomic (Truszkowski et al., 2006). Further,
it can be argued that autonomic systems are inherently autonomous,
as they are required to adapt and evolve to meet their goals of being
self-healing, self-configuring, self-optimizing, and self-protecting.

Autonomous systems can be exceedingly complex, and consequently
extremely difficult to develop. Often, the complete behavior of the sys-
tem cannot be foreseen at the outset, partly because of the evolving
nature of the system, and partly because it is difficult to capture all of
the necessary domain knowledge before development begins. Because

c© 2005 Kluwer Academic Publishers. Printed in the Netherlands.

aireview.tex; 28/10/2005; 14:18; p.1



2 Rash, Hinchey, Rouff, Gračanin, and Erickson

of this and the system’s emergent behavior (that is, behavior that is
exhibited by a system as it evolves, but which was not anticipated) the
system cannot be fully tested using traditional methods (Rouff et al.,
2004).

Successes reported from the use of formal methods (Hinchey and
Bowen, 1999) suggest they can go a long way towards solving these
problems, and that they can reduce reliance on testing. However, they
are still perceived to be difficult to use (Bowen and Hinchey, 1995), and
their uptake in industry has not been as commonplace as one would
have expected.

2. Requirements-Based Programming

2.1. Background

Requirements-Based Programming (RBP) has been advocated (Harel,
2001; Harel, 2004) as a viable means of developing complex, evolving
systems. It embodies the idea that requirements can be systematically
and mechanically transformed into executable code.

Generating code directly from requirements would enable software
development to better accommodate the ever increasing demands on
systems. In addition to increased software development productivity
through eliminating manual efforts in the coding phase of the soft-
ware lifecycle, RBP can also increase the quality of generated sys-
tems by automatically performing verification on the software—if the
transformation is based on the formal foundations of computing.

This may seem to be an obvious goal in the engineering of soft-
ware systems, but RBP does in fact go a step further than current
development methods. System development typically assumes the ex-
istence of a model of reality, called a design (or, more correctly, a
design specification), from which an implementation will be derived.
This model must itself be derived from the system requirements, but
there is a large “gap”, termed the “analysis-specification gap,” in going
from requirements to design (Hinchey et al., 2005a)—representing the
problem of capturing requirements and adequately representing them
in a specification that is clear, concise, and complete. RBP seeks to
eliminate this “gap” by ensuring that the ultimate implementation
can be fully traced back to the actual requirements of the system
(although, as usually proposed by its advocates, it does not necessarily
entail full mathematical provability of the equivalence between a set of
requirements and its implementation).

aireview.tex; 28/10/2005; 14:18; p.2



Enabling a Requirements-Based Programming Approach 3

2.2. R2D2C

R2D2C (Requirements-to-Design-to-Code) is a NASA patent-pending
approach to the engineering of complex computer systems where the
need for correctness of the system, with respect to its requirements, is
particularly high. This category includes NASA mission software, most
of which exhibits both autonomous and autonomic properties.

The approach, described in greater detail in (Hinchey et al., 2005a),
embodies the main idea of requirements-based programming. It goes
further, however, in that the approach offers not only an underlying
formalism, but also full formal development from requirements capture
through to automatic generation of provably correct code. Moreover,
the approach can be adapted to generate instructions in formats other
than conventional programming languages—for example, instructions
for controlling a physical device, or rules embodying the knowledge
contained in an expert systemm. In these contexts, NASA is currently
applying the approach to the verification of the instructions and proce-
dures to be generated by the Hubble Space Telescope Robotic Servicing
Missions (HRSM) and in the validation of the rule base used in the
ground control of the ACE spacecraft.

In the remainder of this paper we describe a prototype tool to
support the R2D2C method and report on our experiences in apply-
ing it to validate the prototype Lights-Out Ground Operations Sys-
tem (LOGOS), an autonomous system exhibiting autonomic properties
(Truszkowski et al., 2006; Truszkowski et al., 2004; Rash et al., 2005).

3. Requirements to Design to Code

R2D2C takes, as input, system requirements written by engineers (and
others) as scenarios in natural language, or UML use cases, or some
other appropriate graphical or textual representation. From the sce-
narios, an automated theorem prover in which the laws of concurrency
(Hinchey and Jarvis, 1995) have been embedded infers a corresponding
process-based specification expressed in an appropriate formal lan-
guage (currently we are using CSP, Hoare’s language of Communicating
Sequential Processes (Hoare, 1978; Hoare, 1985)).

For applications requiring the specification of time, such as real-time
systems, a timed process-based specification language (e.g., timed CSP
(Schneider et al., 1991)) could be used. Our current prototyping work
addresses applications that do not require the specification of time.

A process-based specification is amenable to analysis and forms an
appropriate basis for code generation. As much as possible, R2D2C

aireview.tex; 28/10/2005; 14:18; p.3



4 Rash, Hinchey, Rouff, Gračanin, and Erickson

D4
Analyze

D5
Code

Generator

D3
Model

Inference

D1
Scenarios
Capture

existing prototype

future enhancement

commercially available

D2
Traces

Generator

Laws of
Concurrency

Theorem
Prover

Existing CSP
Tools

Visualization
Tools

Future
Bespoke Tools

Scenarios Traces CSP Spec
(Modified)
CSP Spec

Requirements
Documentation

Figure 1. The R2D2C approach and current status of the prototype.

makes use of widely-available tools and notations that are well-trusted
and that have been demonstrated to be useful in the development of
high-quality systems.

A “short-cut” approach to R2D2C (Hinchey et al., 2004; Hinchey
et al., 2005a) avoids the use of an automated theorem prover, which
is computationally expensive. This alternative approach involves in-
ferring a corresponding process-based specification (in a language we
have named EzyCSP) without a theorem prover, but requires a (one
time) proof of the translation in order to preserve the mathemati-
cal underpinnings of the R2D2C approach. Figure 1 illustrates those
parts of the approach that are embodied in the current R2D2C proto-
type tool (described in the remainder of this paper), and shows where
commercially-available and public domain tools may be used to support
the approach.

3.1. Prototype Tool

The CSP formal model is the central part of the proposed approach,
which conforms to a Model Driven Architecture (MDA) (Kleppe et al.,
2003). The prototype tool automatically generates the code from the
CSP model (or design) (Figure 2) into which the tool has already
transformed the requirements.

Developing a tool based on CSP requires two major issues to be
addressed—how to translate the CSP model into code and how to
translate the requirements into the CSP model. The tool transforms the
derived design (CSP model) into an equivalent software representation
(code) using Java as the target programming language. There were
several reasons for selecting the Java programming language (Gosling
et al., 2000) both for tool implementation and for the target platform:

− Java is a general-purpose, concurrent, class-based, object-oriented
programming language, with very few implementation and hard-
ware dependencies.

aireview.tex; 28/10/2005; 14:18; p.4



Enabling a Requirements-Based Programming Approach 5

Computationally independent layer
(input requirements)

Platform independent layer
(CSP)

Platform specific layer
(Java)

Figure 2. MDA approach

Natural
Language

Input
Requirements Compile Design Run Code View Testing

Figure 3. High-level program flow

− An off-the-shelf implementation (library) of CSP for Java1 is avail-
able. While JCSP does not provide direct CSP-to-Java mapping,
it conforms to the CSP model of communicating systems for Java
multi-threaded applications (Lea, 2000). There is also support for
distributed JCSP components using JCSP.net (Welch et al., 2002).

− Java Swing (Walrath et al., 2004), in combination with some avail-
able Java IDEs, greatly simplifies user interface development.

− Many Java-based translator development tools are available.

The prototype tool implementation in Java uses off-the-shelf com-
ponents. A Swing-based user interface provides a transparent layer for
entering the requirements and viewing the resulting model. Figure 3
shows the high-level program flow.

The translators are implemented using the ANTLR (Parr and Quong,
1995) tool, which provides a framework for constructing recognizers,
compilers, and translators from grammatical descriptions2. A discus-
sion of ANTLR and some related tools can be found in (Smaragdakis
et al., 2004). An English-like input language, specified as an ANTLR
grammar, is used to specify user requirements (Figure 4). ANTLR uses
the grammar to automatically generate the translator. The translator
is then used to generate the CSP model that corresponds to the user
requirements (Figure 5). Figure 6 shows the graph-based representation
of the system (under development) (Rash et al., 2005).

1 See http://www.cs.kent.ac.uk/projects/ofa/jcsp/
2 See http://www.antlr.org/

aireview.tex; 28/10/2005; 14:18; p.5



6 Rash, Hinchey, Rouff, Gračanin, and Erickson

Figure 4. Input requirements

4. Experiences in Applying the Prototype Tool

4.1. LOGOS

The Lights-Out Ground Operations System (LOGOS) is a proof-of-
concept NASA system for automating ground station operations in
controlling satellites as they orbit the earth and periodically come into
view of the ground station. Its design concepts take into account the
need for adaptability to reflect variations in the degree of mission on-
board autonomy. LOGOS is made up of a community of autonomous
software agents, which exhibit autonomic behavior and cooperate to
perform the functions that in the past have been performed by hu-
man operators using traditional software tools such as orbit generators
and command sequence planners. It is designed to operate in “lights
out” mode (i.e., without human intervention except in situations where
problems and anomalies can no longer be dealt with by the system
itself).

LOGOS comprises ten agents, some of which interface with legacy
software, some of which perform services for the other agents in the
community, and some of which interface with an analyst or operator.
The agents perform the functions that in a conventional approach
would be performed by human operators using traditional software
tools such as orbit generators and command sequence planners.

The agents include:

aireview.tex; 28/10/2005; 14:18; p.6



Enabling a Requirements-Based Programming Approach 7

Figure 5. CSP model

Figure 6. Graphical representation of a system

User Interface Agent: acts as an interface between the analyst and
the agent community.

Spacecraft Monitoring Agent: interfaces with the spacecraft, re-
ceives the telemetry, and sends it to the proper agent.

aireview.tex; 28/10/2005; 14:18; p.7



8 Rash, Hinchey, Rouff, Gračanin, and Erickson

Fault Resolution Agent: contains an expert system that can auto-
matically fix anomalies and learn from the analyst how to resolve
new anomalies.

Database Interface Agent: interfaces with a database for discrete
data items (e.g., user names and passwords, pager numbers, etc.),

Trending Agent: analyzes spacecraft telemetry for trend information
and sends the telemetry to an archival database for long term
storage.

Pager Interface Agent: interfaces with the paging system so that
an analyst can be paged in the event of an anomaly or other fault
that can not be handled by LOGOS,

Visualization Interface Agent: interfaces with the data visualiza-
tion system for visualizing telemetry data for the analyst.

GenSAA Interface Agent: interfaces with the spacecraft scheduling
system to obtain times for subsequent spacecraft passes.

Archive Interface Agent: logs all agent messages for debugging pur-
poses.

Spacecraft Monitoring Agent: is a manager agent that all agents
register with and from which an agent may obtain addresses of
other agents with which it may need to communicate.

Each agent can communicate with any other agent in the community,
though not all agents need to communicate with each other. When the
agents start up, they all register their capabilities with the manager
agent and then request pointers to other agents that can perform
needed services. When an agent registers with the requested capability,
the manager agent sends the requesting agent the address of the agent
with the capability. The two agents then engage in a handshake process
by which the servicing agent obtains the requesting agent’s address and
the requesting agent verifies that the servicing agent can perform the
needed service.

For more details on LOGOS and its autonomic properties, see (Rouff
et al., 2004; Truszkowski et al., 2006; Rash et al., 2005)..

4.2. LOGOS in R2D2C

Although a relatively small system, the entire LOGOS system is too
extensive to illustrate in its entirety in this paper. Instead, we will
illustrate the application of the R2D2C approach and the operation

aireview.tex; 28/10/2005; 14:18; p.8



Enabling a Requirements-Based Programming Approach 9

of the prototype by considering parts of LOGOS. We will consider
example agents from the system, namely the Spacecraft Monitoring
Agent, the Archive Interface Agent, and the Pager Interface Agent, and
illustrate their mapping from natural language descriptions through to
simple Java implementations.

A trivial example will, to begin, illustrate how scenarios map to
CSP. Suppose we have the following as part of one of the scenarios for
the system:

if the Spacecraft Monitoring Agent receives a “fault” advisory
from the spacecraft, the agent sends the fault to the Fault
Resolution Agent

OR
if the Spacecraft Monitoring Agent receives engineering data

from the spacecraft, the agent sends the data to the Trend-
ing Agent

That part of the scenario could be mapped to structured text as:

inSMA?fault from Spacecraft
then outSMA!fault to FIRE
else
inengSMA?data from Spacecraft
then outengSMA!data to TREND

The laws of concurrency would allow us to derive the traces as:

tSMA ⊇ {〈〉, 〈inSMA, fault〉,

〈inSMA, fault, outSMA, fault〉}
⋃

{〈〉, 〈inengSMA, data〉,
〈inengSMA, data, outSMA, data〉}

From the traces, we can infer an equivalent CSP process specification
as:

SMA = inSMA?fault → (outSMA!fault → SKIP )

| (inengSMA?data → outengSMA!data → SKIP )

Let us now consider a slightly larger example, the LOGOS Archive
Interface Agent (AIFA). The purpose of the AIFA is to provide access to
an archive database. The AIFA is different from the Database Interface
Agent in that the archive is for storage of large amounts of telemetry
data, while the database is primarily responsible for storage of smaller
items to which the agents will need fast access, such as anomalies and
user names. It communicates with other agents through separate input
and output channels.

aireview.tex; 28/10/2005; 14:18; p.9



10 Rash, Hinchey, Rouff, Gračanin, and Erickson

if the Archive Interface Agent receives a request for telemetry
data, the Archive Interface Agent sends a request to the
responsible agent, receives telemetry data, and sends a
response back to the sender of the request

OR
if the Archive Interface Agent receives a request for mnemonic

data, the Archive Interface Agent sends a request to the
responsible agent, receives mnemonic data, and sends a
response back to the sender of the request

OR
if the Archive Interface Agent receives a request for inserting

data, the Archive Interface Agent sends a request to the
archive for storage

OR
if the Archive Interface Agent receives another kind of mes-

sage, reply to the sender that the message was not recog-
nized

AIFA BUS = aifa.Iin?msg →
case

AIFA REQUEST TELEMETRYmsg,telem name

if msg = (REQUEST,RETURN DATA, telem name)

AIFA REQUEST MENMONICmsg,mnem name

if msg = (REQUEST,RETURN DATA,mnem name)

aifa.Eout!telemetry → aifa.Ein?result
→ IAFA BUS

if msg = (INFORM, INSERT DATA, telemetry)

aifa.Iout!(head(msg), UNRECOGNIZED)
→ IAFA BUS

otherwise

Figure 7. Partial CSP description of the Archive Interface Agent.

The above scenarios would then be translated into CSP. Figure 7
shows a partial CSP description of the AIFA. This specification states

aireview.tex; 28/10/2005; 14:18; p.10



Enabling a Requirements-Based Programming Approach 11

that the process AIFA BUS receives a message on its “Iin” channel
and stores it in a variable called “msg”. Depending on the contents of
the message, one of four different processes is executed.

The first two processes in the case statement are requests for data,
the third is a request to store data, and the fourth is an error message
for a malformed message. The one request for insertion is processed
so that the data is sent to the archive and the agent waits for a
confirmation before proceeding. There is no timeout when waiting for
the archive, so the agent can deadlock; if the archive returns an error
message, that message is ignored.

Figure 8 shows the specification of the two processes that request
data from the archive (see the case statement in Figure 7).

AIFA REQUEST TELEMETRYmsg,tel name

= aifa.Eout!tel name
→ aifa.Ein?result
→ aifa.Iout!(agent(msg),msg id(msg), tel name, tel(result))
→ AIFA BUS

AIFA REQUEST MENMONICmsg,mnem name

= aifa.Eout!mnem name
→ aifa.Ein?result
→ aifa.Iout!(agent(msg),msg id(msg),mnem name, mnem(result))
→ AIFA BUS

Figure 8. Partial CSP description of the Archive Interface Agent.

The requests for data are similar to requests for storing of data,
except the results are sent back to the requesting agent. In both cases
the request is sent over the aifa.Eout channel to the archive and the
agent then waits for the archive to answer over the same channel (again,
with no timeout, this can lead to a deadlock). Once the response from
the archive is received over the afia.Ein channel, the result is sent back
to the requesting agent over the afia.Iout channel. The name of the
requesting agent and the original message’s id are extracted from the
message representing the request for data.

The corresponding R2D2C tool snapshots are shown in Figures 9
and 10.

A similar approach for the Pager Interface Agent will produce

aireview.tex; 28/10/2005; 14:18; p.11



12 Rash, Hinchey, Rouff, Gračanin, and Erickson

Figure 9. Archive Interface Agent Input requirements

Figure 10. Archive Interface Agent CSP model

if the Pager Interface Agent receives a request from the User
Interface Agent, the Pager Interface Agent sends a request
to the Database Interface Agent for an analyst’s pager
information and puts the message in a list of requests to
the Database Interface Agent

OR
if the Pager Interface Agent receives a pager number from the

Database Interface Agent, then the Pager Interface Agent

aireview.tex; 28/10/2005; 14:18; p.12



Enabling a Requirements-Based Programming Approach 13

removes the message from the paging queue and sends a
message to the analyst’s pager and adds the analyst to the
list of paged people

OR
if the Pager Interface Agent receives a message from the User

Interface Agent to stop paging a particular analyst, the
Pager Interface Agent sends a stop-paging command to the
analyst’s pager and removes the analyst from the paged list

OR
if the Pager Interface Agent receives another kind of message,

reply to the sender that the message was not recognized

The corresponding CSP is shown in Figure 11 and the corresponding
R2D2C tool snapshots are shown in Figures 12 and 13.

PAGER BUSdb waiting,paged = pager.Iin?msg →
case

GET USER INFOdb waiting,paged,pagee,text

if msg = (START PAGING, specialist, text)

BEGIN PAGINGdb waiting,paged,in reply to id(msg),pager num

if msg = (RETURN DATA.pager num)

STOP CONTACTdb waiting,paged,pagee

if msg = (STOP PAGING, pagee)

pager.Iout!(head(msg), UNRECOGNIZED)
→ PAGER BUSdb waiting,paged

otherwise

Figure 11. Partial CSP description of the pager agent.

4.3. Results

A formal specification of LOGOS in CSP had previously been under-
taken by hand (Rouff et al., 2000). This afforded numerous insights,
highlighting over 80 errors and anomalies in the requirements of a
relatively small system (LOGOS is based, essentially, on ten interacting

aireview.tex; 28/10/2005; 14:18; p.13



14 Rash, Hinchey, Rouff, Gračanin, and Erickson

Figure 12. Pager Interface Agent Input requirements

Figure 13. Pager Interface Agent CSP model

agents). While many of these were minor oversights that would have
caused inconveniences, others were more significant.

A great advantage of using an example for which we already have a
formal specification is that we can compare the system derived by our
prototype tool with the manually derived formal specification.

Our prototype tool was able to uncover all of the errors and anoma-
lies we found with our manual specification. We were surprised when
we first ran it to find that it halted within seconds, having found yet

aireview.tex; 28/10/2005; 14:18; p.14



Enabling a Requirements-Based Programming Approach 15

another error that had been introduced into the requirements (due to
a typographical error) when changes were made following the original
manual formal specification. The prototype tool can cope with the
LOGOS requirements, generating a design and a Java implementation
in a matter of minutes, whereas manual specification had taken several
days and code generation by hand took several weeks.

A number of additional prospective R2D2C applications have been
identified, implementations of which could be derived both manually
and using R2D2C—from which could be collected measurements that
would support statistical comparisons of the manual and automated
R2D2C appproaches. Such measurements could include time to im-
plement, lines of code, and execution speed. Information of this na-
ture concerning prototyped applications indicates a definite advantage
for automated generation of implementations for at least the limited
domains addressed thus far.

More fundamental is the question of the range of applicability of
the automated approach defined by the R2D2C method, as well as the
question of the efficiency and comprehensiveness of automated verifi-
cation capabilities. Further case studies and prototyping over time will
provide answers to these questions.

5. Future Applications

The prototype tool described in this paper is designed to support a
NASA patent-pending method for Requirements-Based Programming
(RBP). The uniqueness of the method is not in supporting RBP, but
in supporting it with a development process that is mathematically
tractable over the entire development process. This fully formal de-
velopment offers levels of assurance and confidence significantly higher
than traditionally available.

The method is not limited to producing executable code, however
(Hinchey et al., 2005a). In addition to applying the approach to agent-
based systems (such as LOGOS) as described in this paper, and to
Wireless Sensor Networks (WSNs) (Hinchey et al., 2005b), we are
currently examining applications of the approach to the verification
of expert systems and robotic applications.

6. Conclusions

The difficulty of developing many autonomous and autonomic appli-
cations is explained by their inherent complexity. Often, required au-
tonomous behavior results in emergent, unexplained behavior that could

aireview.tex; 28/10/2005; 14:18; p.15



16 Rash, Hinchey, Rouff, Gračanin, and Erickson

not, reasonably, have been foreseen. The need to exhibit autonomic
behavior often compounds the situation, giving rise to necessary self-
managing behavior that could not reasonably be expected to be the
subject of even the most exhaustive testing plans.

Only with fully formal underpinnings for the development process
can we be assured of correctness (Bauer, 1980). Formal development
processes will become more and more important in future autonomic
computing systems, and the continued success of the Autonomic Com-
puting initiative is predicated on the ability to develop complex sys-
tems that both exhibit autonomic self-managing behaviors and operate
correctly (with respect to their requirements).

The experience related in this paper leads us to be confident that
such tools will offer greater levels of assurance in other domains, and
enhance both the quality and performance of future autonomous and
autonomic systems.

Acknowledgements

This paper is a revised and extended version of (Rash et al., 2005)
presented at IEEE EASe 2005. Part of this work was supported by the
NASA Goddard Space Flight Center Technology Transfer Office. Denis
Gračanin was supported by an ASEE/NASA Summer Faculty Fellow-
ship hosted at the NASA Software Engineering Laboratory (Code 581),
NASA Goddard Space Flight Center. John Erickson was supported by
the NASA Student Internship Program and by the Information Systems
Division (Code 580) at NASA Goddard Space Flight Center.

References

Bauer, F. L.: 1980, ‘A trend for the next ten years of software engineering’. In:
H. Freeman and P. M. Lewis (eds.): Software Engineering. Academic Press, pp.
1–23.

Bowen, J. P. and M. G. Hinchey: 1995, ‘Seven More Myths of Formal Methods’.
IEEE Software 12(4), 34–41.

Gosling, J., B. Joy, G. Steele, and G. Bracha: 2000, JavaTM Language Specification.
Boston: Addison Wesley, second edition.

Harel, D.: 2001, ‘From Play-In Scenarios To Code: An Achievable Dream’. IEEE
Computer 34(1), 53–60.

Harel, D.: 2004, ‘Comments made during presentation at “Formal Approaches
to Complex Software Systems” panel session’. ISoLA-04 First International
Conference on Leveraging Applications of Formal Methods.

Hinchey, M. G. and J. P. Bowen (eds.): 1999, Industrial-Strength Formal Methods
in Practice, FACIT Series. London, UK: Springer-Verlag.

aireview.tex; 28/10/2005; 14:18; p.16



Enabling a Requirements-Based Programming Approach 17

Hinchey, M. G. and S. A. Jarvis: 1995, Concurrent Systems: Formal Development in
CSP, International Series in Software Engineering. London, UK: McGraw-Hill
International.

Hinchey, M. G., J. L. Rash, and C. A. Rouff: 2004, ‘Requirements to Design to Code:
Towards a Fully Formal Approach to Automatic Code Generation’. Technical
Report TM-2005-212774, NASA Goddard Space Flight Center, Greenbelt, MD,
USA.

Hinchey, M. G., J. L. Rash, and C. A. Rouff: 2005a, ‘A Formal Approach to
Requirements-Based Programming’. In: Proc. IEEE International Conference
and Workshop on the Engineering of Computer Based Systems (ECBS 2005).
IEEE Computer Society Press, Los Alamitos, Calif.

Hinchey, M. G., J. L. Rash, and C. A. Rouff: 2005b, ‘Towards an Automated
Development Methodology for Dependable Systems with Application to Sensor
Networks’. In: Proc. IEEE Workshop on Information Assurance in Wireless Sen-
sor Networks (WSNIA 2005), Proc. International Performance Computing and
Communications Conference (IPCCC-05). Phoenix, Arizona, IEEE Computer
Society Press, Los Alamitos, Calif.

Hoare, C. A. R.: 1978, ‘Communicating Sequential Processes’. Communications of
the ACM 21(8), 666–677.

Hoare, C. A. R.: 1985, Communicating Sequential Processes, Prentice Hall In-
ternational Series in Computer Science. Englewood Cliffs, NJ: Prentice Hall
International.

Kleppe, A., J. Warmer, and W. Bast: 2003, MDA Explained: The Model Driven
Architecture: Practice and Promise. Boston: Addison-Wesley.

Lea, D.: 2000, Concurrent Programming in JavaTM : Design Principles and Pat-
terns, The JavaTM Series. Reading, Massachusetts: Addison-Wesley Professional,
second edition.

Parr, T. J. and R. W. Quong: 1995, ‘ANTLR: A Predicated-LLk Parser Generator’.
Software Practice and Experience 25(7), 789–810.

Rash, J. L., M. G. Hinchey, C. A. Rouff, D. Gračanin, and J. D. Erickson: 2005,
‘Experiences with a Requirements-Based Programming Approach to the De-
velopment of a NASA Autonomous Ground Control System’. In: Proc. IEEE
Workshop on Engineering of Autonomic Systems (EASe 2005) held at the IEEE
International Conference and Workshop on the Engineering of Computer Based
Systems (ECBS 2005). IEEE Computer Society Press, Los Alamitos, Calif.

Rouff, C. A., J. L. Rash, and M. G. Hinchey: 2000, ‘Experience Using Formal
Methods for Specifying a Multi-Agent System’. In: Proc. Sixth IEEE Inter-
national Conference on Engineering of Complex Computer Systems (ICECCS
2000). Tokyo, Japan, IEEE Computer Society Press, Los Alamitos, Calif.

Rouff, C. A., W. F. Truszkowski, M. G. Hinchey, and J. L. Rash: 2004, ‘Verification
of Emergent Behaviors in Swarm Based Systems’. In: Proc. 11th IEEE Interna-
tional Conference on Engineering Computer-Based Systems (ECBS), Workshop
on Engineering Autonomic Systems (EASe). Brno, Czech Republic, pp. 443–448,
IEEE Computer Society Press, Los Alamitos, Calif.

Schneider, S., J. Davies, D. M. Jackson, G. M. Reed, J. Reed, and A. W. Roscoe:
1991, ‘Timed CSP: Theory and Practice’. In: Proc. REX, Real-Time: Theory in
Practice Workshop, Vol. 600 of LNCS. pp. 640–675, Springer-Verlag.

Smaragdakis, Y., S. S. Huang, and D. Zook: 2004, ‘Program generators and the
tools to make them’. In: PEPM ’04: Proceedings of the 2004 ACM SIGPLAN
Symposium on Partial Evaluation and Semantics-Based Program Manipulation.
pp. 92–100, ACM Press.

aireview.tex; 28/10/2005; 14:18; p.17



18 Rash, Hinchey, Rouff, Gračanin, and Erickson

Sterritt, R. and M. G. Hinchey: 2005, ‘Why Computer Based Systems Should be
Autonomic’. In: Proc. 12th IEEE International Conference on Engineering of
Computer Based Systems (ECBS 2005). Greenbelt, MD, pp. 406–414.

Truszkowski, W. F., M. G. Hinchey, J. L. Rash, and C. A. Rouff: 2006, ‘Autonomous
and Autonomic Systems: A Paradigm for Future Space Exploration Missions’.
IEEE Transactions on Systems, Man and Cybernetics, Part C (to appear).

Truszkowski, W. F., J. L. Rash, C. A. Rouff, and M. G. Hinchey: 2004, ‘Some Au-
tonomic Properties of Two Legacy Multi-Agent Systems — LOGOS and ACT’.
In: Proc. 11th IEEE International Conference on Engineering Computer-Based
Systems (ECBS), Workshop on Engineering Autonomic Systems (EASe). Brno,
Czech Republic, pp. 490–498, IEEE Computer Society Press, Los Alamitos, Calif.

Walrath, K., M. Campione, A. Huml, and S. Zakhour: 2004, JFC Swing Tutorial,
The: A Guide to Constructing GUIs. Boston: Addison Wesley, second edition.

Welch, P. H., J. R. Aldous, and J. Foster: 2002, ‘CSP Networking for Java
(JCSP.net)’. In: Proceedings of the Global and Collaborative Computing Work-
shop (ICCS 2002), Vol. 2330 of Lecture Notes in Computer Science. pp. 695–708,
Springer-Verlag.

Biographies

James L. Rash received the MA in Mathematics from the Univer-
sity of Texas at Austin, USA, and the BA degree in Mathematics
and Physics from the University of Texas at Austin, USA. He leads
formal methods research and development in the Advanced Architec-
tures and Automation Branch at the NASA Goddard Space Flight
Center, where his other major responsibilities include managing the
Operating Missions as Nodes on the Internet (OMNI) Project. He has
authored/co-authored move than 30 technical papers and articles, co-
edited three books, and edited eight journal special issues, and has been
an organizer of more than 15 conferences and workshops on artificial
intelligence, formal methods, and Internet technologies for space mis-
sions. His research interests include formal methods and agent-based
technologies.

Michael G. Hinchey received the PhD in Computer Science from
University of Cambridge, UK, the MSc degree in Computation from
University of Oxford, UK, and the BSc degree in Computer Science
from University of Limerick, Ireland. He is currently Director of the
NASA Software Engineering Laboratory, located at Goddard Space
Flight Center. Prior to joining the US Government, he held academic
positions at the level of Full Professor in the USA, UK, Ireland, Sweden
and Australia. He is the author of more than 200 technical papers,
and 15 books. His current research interests are in the areas of formal
methods, system correctness, and agent based technologies. Dr Hinchey

aireview.tex; 28/10/2005; 14:18; p.18



Enabling a Requirements-Based Programming Approach 19

is a Senior Member of the IEEE, a Fellow of the IEE, the Institute of
Mathematics and Its Applications, the Institute of Engineers of Aus-
tralia, and the British Computer Society. He is a Chartered Engineer,
Chartered Professional Engineer, Chartered Information Technology
Professional and Chartered Mathematician. He is currently Chair of
the IEEE Technical Committee on Complexity in Computing, and is
the IEEE Computer Societys voting representative to IFIP TC1, of
which he has been elected Chair for 2006 to 2008.

Christopher Rouff received the PhD in Computer Science from the
University of Southern California, a MS in Computer Science from
University of California, Davis and a BA in Mathematics/Computer
Science from California State University, Fresno. He is currently a
senior scientist in the Advanced Concepts Business Unit at Science
Applications International Corporation and is conducting research and
development on multi-agent systems, verification of intelligent systems
and collaborative robotics for NASA and DARPA. Previously he was
with NASA Goddard for nine years where he researched and prototyped
cooperative multi-agent systems for ground and spaceflight applications
and led a number of software research and development projects. Dr
Rouff has over seventy publications and twenty-five years of experience
in software engineering and intelligent systems.

Denis Gracanin was born in Rijeka, Croatia, on May 12, 1963. He re-
ceived the BS and MS degrees in electrical engineering from the Univer-
sity of Zagreb, Croatia, in 1985 and 1988, respectively, and the MS and
PhD degrees in computer science from the University of Louisiana at
Lafayette in 1992 and 1994, respectively. He was a Research Scientist in
the A-CIM Center, University of Louisiana at Lafayette, from January
1994 to August 1999, and an adjunct Assistant Professor in the Center
for Advanced Computer Studies, University of Louisiana at Lafayette,
from August 1997 to August 1999. Since August 1999, he has been
an Assistant Professor in the Computer Science Department, Virginia
Polytechnic Institute & State University. In 2004 he received NASA
summer faculty fellowship and in 2005 he received the ONR/ASEE
summer senior faculty fellowship. His current research interests include
distributed virtual environments, distributed simulations, and sensor
networks. Dr Gracanins professional memberships include the ACM,
AAAI, APS, SCS, and SIAM. He is also a Professional Engineer in
electrical engineering, Louisiana Professional Engineering and Land
Surveying Board. In 1991, he received a Fulbright scholarship for stud-
ies at the University of Louisiana at Lafayette.

aireview.tex; 28/10/2005; 14:18; p.19



20 Rash, Hinchey, Rouff, Gračanin, and Erickson

John Erickson is a PhD student in Computer Sciences at The Uni-
versity of Texas at Austin. He is interested in formal verification using
automatic theorem proving, and is currently investigating ways to im-
prove the ACL2 theorem prover. His advisor is J Moore and he plans
to graduate in December of 2006.

Address for Offprints: Kluwer Prepress Department
P.O. Box 990
3300 AZ Dordrecht
The Netherlands

aireview.tex; 28/10/2005; 14:18; p.20


